Artificial Intelligence




Alpha—beta Pruning

In case of standard ALPHA-BETA PRUNING minimax
tree, it returns the same move as minimax would, but
prunes away branches that cannot possibly influence
the final decision.

Created by: Ashish Shah



Figure A two-ply game tree. The /A nodes are “MAX nodes,” in which it 15 MAX's
turn to move, and the / nodes are “MIN nodes.” The terminal nodes show the utility values
for MAX; the other nodes are labeled with their minimax values. MAX's best move at the root
Is @7, because it leads to the state with the highest minimax value, and MIN's best reply 1s by,
because it leads to the state with the lowest minimax value.

Created by: Ashish Shah



Alpha—beta Pruning

Consider again the two-ply game tree from Figure
Let's go through the calculation of the optimal
decision once more, this time paying careful attention
to what we know at each point in the process.

Tl
1

he steps are explained in Figure (P.T.O.).

he outcome is that we can identify the minimax

decision without ever evaluating two of the leaf nodes

Created by: Ashish Shah



(b [—==. =]

[—==. 3]

3 12

{ch s ]

(=) (¥

3 e " 2

14 5 2

Figure Stages in the calculation of the optimal decision for the game tree in Figure 5.2,
At each point, we show the range of possible values for each node. {(a) The first leaf below =
has the value 3. Hence, &, which is a v node . has a valoe of ar rmosr 3. (b)) The second leaf
below & has a value of 12; MM wonld avoid this mowve, so the value of B is still at most 3.
(cy The third leaf bhelow & has a value of 8; we have seen all &'s successor states, so the
value of 2 is exactly 3. MNow, we can infer that the value of the root is ar least 3, because
MAN has a choice worth 3 at the root. {(d The first leaf below 7 has the value 2. Hence.
7, which is a MIN node., has a value of af meosr 2. But we know that 5 is worth 3, so MAaX
would never choose 7. Therefore. there is no point in looking at the other successor states
of 7. This is an example of alpha—beta pruning. {e) The first leaf below I'? has the value 14,
s 17 is worth ar meosr 14, This is still higher than MAX™s best altermative (i.e.. 3), s0 we need
to keep exploring f27's successor states. MNotice also that we now have bounds on all of the
successors of the root, so the root’s value is also at most 14, (f) The second successor of I
iz worth 5, so again we need to keep exploring. The third successor is worth 2, o mow I is
worth exactly 2. MAX s decision at the root is to mowve o &, giving a value of 3.

Created by: Ashish Shah 5




Alpha—beta Pruning

Another way to look at this is as a simplification of the
formula for MINIMAX. Let the two unevaluated
successors of node C in Figure (Refer last figure) have
values x and y.

Then the value of the root node is given by

MiINIMAX (roof) = max(min(3, 12, 8), min(2, z,y), min(14,5,2))
= max(3, min{2, . y),2)
= max(J, z,2) where z = min(2,x,y) < 2
= 1.

Created by: Ashish Shah



Alpha—beta Pruning

In other words, the value of the root and hence the
minimax decision are independent of the values of the
pruned leaves x and y.

Alpha-beta pruning can be applied to trees of any
depth, and it is often possible to prune entire subtrees
rather than just leaves.

The general principle is this: consider a node n
somewhere in the tree (Refer Figure P.T.O.), such that
Player has a choice of moving to that node.

Created by: Ashish Shah



Alpha—beta Pruning

If Player has a better choice m either at the parent
node of n or at any choice point further up, then n will
never be reached in actual play. So once we have found
out enough about n (by examining some of its
descendants) to reach this conclusion, we can prune it.

Alpha-beta pruning gets its name from the following
two parameters(Refer Fig) that describe bounds on the
backed-up values that appear anywhere along the
path.

Created by: Ashish Shah



Player

Opponent

Player

Opponent
Figure The general case for alpha-beta pruning. If m 1s better than n for Player, we
will never get to n in play.

v = the value of the best (i.e., highest-value) choice we have found so far at any choice point
along the path for MAX.

(3 = the value of the best (i.e., lowest-value) choice we have found so far at any choice point
along the path for MIN.

Created by: Ashish Shah 9



Alpha—beta Pruning

Alpha-beta search updates the values of « and f as it
goes along and prunes the remaining branches at a
node (i.e., terminates the recursive call) as soon as the
value of the current node is known to be worse than
the current o or 3 value for MAX or MIN, respectively.

Created by: Ashish Shah 10



Created by: Ashish Shah 11



	Artificial Intelligence
	Alpha–beta Pruning
	Slide Number 3
	Alpha–beta Pruning
	Slide Number 5
		Alpha–beta Pruning
		Alpha–beta Pruning
	Alpha–beta Pruning
	Slide Number 9
	Alpha–beta Pruning
	Slide Number 11

